Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Alexander J. Blake,* Peter Hubberstey and Claire L. Sampson

School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England

Correspondence e-mail:
a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.024$
$w R$ factor $=0.064$
Data-to-parameter ratio $=12.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[tetrakis(μ-acetato-кO:кO')dicopper(II)]-μ-2-aminopyrimidine- $\left.\kappa^{2} N: N^{\prime}\right]$ at 150 K

The basic architectural motif of the title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]$, is a chain of alternating tetrakis(μ-acetato)dicopper(II) and 2-aminopyrimidine moieties in which square-pyramidal copper(II) centres are alternately linked by four bridging acetate anions $[\mathrm{Cu}-\mathrm{O}=1.947$ (2)1.984 (2) \AA] and a single bridging 2 -aminopyrimidine molecule $[\mathrm{Cu}-\mathrm{N} \quad 2.214(2) \AA] . \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds support the $\mathrm{Cu}-\mathrm{N}$ coordination to generate the chains, which align perpendicular to the (10 $\overline{1})$ plane. The dinuclear copper unit has crystallographic inversion symmetry, and the 2 -aminopyrimidine bridging ligand has twofold rotation symmetry.

Comment

The structure of the title compound, (I), has been reported at 296 K (Smith et al., 1991). Continuing our studies of the coordination chemistry of the tetrakis(acetato)dicopper(II) moiety with nitrogen bases (Begley et al., 1993), we now report the structure of the title compound at 150 K . Its asymmetric unit comprises half a tetrakis(acetato)dicopper(II) moiety, the complete dinuclear unit being located on an inversion centre, and half a 2-aminopyrimidine ligand, which is located on a twofold symmetry axis passing through N12, C12 and C14 (Fig. 1). The square-pyramidal coordination geometry of the copper(II) centre comprises four basal O atoms from four bridging acetate anions [Cu-O 1.947 (2), 1.948 (2), 1.983 (2) and, 1.984(2) \AA] and an axial N atom from a single bridging 2-aminopyrimidine molecule $[\mathrm{Cu}-\mathrm{N} 2.214$ (2) \AA A $]$.

(I)

The basic architectural motif of the extended structure is a zigzag chain (Fig. 2) of alternating tetrakis(acetato)dicopper(II) and 2 -aminopyrimidine moieties. The zigzag motif of the chains, which pack perpendicular to the (101)

Received 5 February 2002 Accepted 7 February 2002 Online 22 February 2002

Figure 1
A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $1 / 2-x, 1 / 2-y, 1-z$; (ii) $-x, y, 3 / 2-z$.]
plane (Fig. 3) with alternating copper(II)-copper(II) separations of 2.6281 (14) and 6.4589 (14) \AA, results from the 120° angle between the σ-donor orbitals of the pyrimidine heterocyclic N atoms. Two hydrogen-bonding contacts, one $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$, support the $\mathrm{Cu}-\mathrm{N}$ coordination to generate the chain structure. The significance of the hydrogen-bonding interactions comes, not from their dimensions [$\mathrm{N}-\mathrm{H} 0.86$ (2), H$\cdots \mathrm{O} 2.04$ (2), $\mathrm{N} \cdots \mathrm{O} 2.872$ (3) \AA and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 161$ (3) ${ }^{\circ}$; C-H 0.93, H$\cdots \mathrm{O} 2.34, \mathrm{C} \cdots \mathrm{O} 2.987$ (3) \AA and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 127^{\circ}$], which are moderated by the $\mathrm{Cu}-\mathrm{N}$ coordination, but from the low value of the dihedral angle (7.2 ${ }^{\circ}$) between the plane containing the copper centres and the pyrimidine molecule and the plane containing the copper centres and the two acetate anions providing the hydrogenbond acceptors.

Figure 2
A view of the zigzag chain of alternating tetrakis(acetato)dicopper(II) and 2 -aminopyrimidine moieties. Atoms are identified as follows: Cu , large blue circles; C, black circles; N, blue circles; O, red circles; H, small yellow circles. [Symmetry code: (i) $1 / 2-x, 1 / 2-y, 1-z$.]

Figure 3
A view of the extended structure of the title compound perpendicular to the $(10 \overline{1})$ plane, showing the packing of the chains. Atoms are identified as in Fig. 2.

Experimental

Careful layering of a methanol solution $(5 \mathrm{ml})$ of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(0.079 \mathrm{~g}, 0.396 \mathrm{mmol})$ with a dichloromethane solution $(5 \mathrm{ml})$ of N, N^{\prime}-bis(pyrimidin-2-yl)thiourea $(0.090 \mathrm{~g}, 0.387 \mathrm{mmol})$, previously prepared by reaction of 2-aminopyrimidine $(2.02 \mathrm{~g}, 21.2 \mathrm{~mol})$ with carbon disulfide $(2.41 \mathrm{~g}, 31.7 \mathrm{mmol})$ and sulfur $(0.178 \mathrm{~g}, 5.55 \mathrm{mmol})$ in ethanol (50 ml), yielded, over a period of 7 d , two sets of large chunky crystals, which proved to be $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (located at the bottom of the vial) and the title compound (located on the walls of the vial). The latter was assumed to arise via ligand decomposition.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]$
$M_{r}=458.36$
Monoclinic, $C 2 / c$
$a=15.096$ (8) A
$b=13.585$ (8) \AA
$c=8.580$ (4) A
$\beta=94.13$ (5) ${ }^{\circ}$
$V=1755.0(16) \AA^{3}$
$Z=4$

Data collection

Stoe Stadi-4 four-circle diffractometer
ω / θ scans
Absorption correction: numerical (X-RED; Stoe \& Cie, 1995)
$T_{\text {min }}=0.375, T_{\text {max }}=0.623$
1980 measured reflections
1517 independent reflections 1428 reflections with $I>2 \sigma(I)$
$D_{x}=1.735 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=12.8-17.0^{\circ}$
$\mu=2.47 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Tablet, dark green
$0.53 \times 0.45 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.016 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=0 \rightarrow 16 \\
& l=-2 \rightarrow 10 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.064$
$S=1.15$
1517 reflections
120 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.03 P)^{2}\right. \\
\quad+4.087 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.32 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.45 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1

Selected interatomic distances (\AA).

$\mathrm{Cu} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.6281(14)$	$\mathrm{Cu} 1-\mathrm{O} 12^{\mathrm{i}}$	$1.947(2)$
$\mathrm{Cu} 1-\mathrm{N} 11$	$2.214(2)$	$\mathrm{Cu} 1-\mathrm{O} 21$	$1.984(2)$
$\mathrm{Cu} 1-\mathrm{O} 11$	$1.949(2)$	$\mathrm{Cu} 1-\mathrm{O} 22^{\mathrm{i}}$	$1.983(2)$

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.
Amino H atoms were located from ΔF syntheses and refined with the $\mathrm{N}-\mathrm{H}$ distance restrained to be 0.88 (1) \AA and with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{N})$. Methyl H atoms were located from ΔF syntheses and refined as part of a rigid rotating group with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. After location from ΔF syntheses, aromatic H atoms were placed geometrically and refined with a riding model for which the $\mathrm{C}-\mathrm{H}$ distance was constrained to be $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: Stadi4 (Stoe \& Cie, 1995); cell refinement: Stadi4; data reduction: $X-R E D$ (Stoe \& Cie, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2002).

We thank the EPSRC (UK) for the provision of a diffractometer and the University of Nottingham for support (to CLS).

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). SIR92. J. Appl. Cryst. 27, 435.
Begley, M. J., Hubberstey, P., Spittle, P. H. \& Walton, P. H. (1993). Acta Cryst. C49, 1047-1049.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Smith, G., Kennard, C. H. L. \& Byriel, K. A. (1991). Polyhedron, 10, 873-876. Spek, A. L. (2002). PLATON. University of Utrecht, The Netherlands. Stoe \& Cie (1995). Stadi4 (Version 1.07) and X-RED (Version 1.08). Stoe \& Cie, Darmstadt, Germany.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

